Exercise 39

Using vectors, show that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square.

Solution

Let the two adjacent sides of the rectangle be represented by vectors \mathbf{a} and \mathbf{b}. Also, let the diagonals be represented by vectors \mathbf{L}_{1} and \mathbf{L}_{2}.

From the figure,

$$
\begin{aligned}
\mathbf{a} & =(0, a) \\
\mathbf{b} & =(b, 0)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{L}_{1}=\mathbf{b}+\mathbf{a}=(b, a) \\
& \mathbf{L}_{2}=\mathbf{b}-\mathbf{a}=(b,-a) .
\end{aligned}
$$

Suppose that the diagonals are perpendicular. Then the dot product of \mathbf{L}_{1} and \mathbf{L}_{2} must be zero.

$$
\begin{gathered}
\mathbf{L}_{1} \cdot \mathbf{L}_{2}=0 \\
(b, a) \cdot(b,-a)=0 \\
b^{2}-a^{2}=0
\end{gathered}
$$

As a result, $a=b$, which means all sides of the rectangle have the same length.

Suppose now that the rectangle is a square, and all sides of the rectangle are the same: $a=b$.

From the figure,

$$
\begin{aligned}
\mathbf{a} & =(0, a) \\
\mathbf{b} & =(a, 0)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{L}_{1}=\mathbf{b}+\mathbf{a}=(a, a) \\
& \mathbf{L}_{2}=\mathbf{b}-\mathbf{a}=(a,-a) .
\end{aligned}
$$

Calculate the dot product of \mathbf{L}_{1} and \mathbf{L}_{2} to determine the angle between them.

$$
\mathbf{L}_{1} \cdot \mathbf{L}_{2}=\left\|\mathbf{L}_{1}\right\|\left\|\mathbf{L}_{2}\right\| \cos \theta
$$

Solve for $\cos \theta$.

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{L}_{1} \cdot \mathbf{L}_{2}}{\left\|\mathbf{L}_{1}\right\|\left\|\mathbf{L}_{2}\right\|} \\
& =\frac{(a, a) \cdot(a,-a)}{\sqrt{a^{2}+a^{2}} \sqrt{a^{2}+(-a)^{2}}} \\
& =\frac{a^{2}-a^{2}}{\sqrt{2 a^{2}} \sqrt{2 a^{2}}} \\
& =0
\end{aligned}
$$

The angle between the diagonals is then

$$
\theta=\cos ^{-1} 0=\frac{\pi}{2},
$$

which means they are perpendicular. Therefore, the diagonals of a rectangle are perpendicular if and only if the rectangle is a square.

